
                                                                                                                  Boson Journal of Modern Physics (BJMP)  

                                                                                                                                                            ISSN: 2454-8413   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                                 338|                                           

 
SCITECH                                                                          Volume 4, Issue 2 
RESEARCH ORGANISATION                                                          June 11, 2018 

Boson Journal of Modern Physics 
www.scitecresearch.com 

The Spiral Solenoids and the Leaf Antenna in Phyllotaxis 

Differential Geometry 

 
I.M.Fabbri

1
 

 
1
Department of Physics, University of Milan, via Celoria 16, 20133 Milan, Italy, 

italomariofabbri@crfm.it 

 

Abstract  

In this paper new classes of spiral thin filamentary wire magnetic coils and antennas are 

introduced theoretically. This study shows that the thin wire circular loop coil as well as the 

cylindrical solenoid are particular cases of these classes. If the small spiral filamentary wire leaf 

loop coil is driven by an alternating electrical current, it will radiate as an antenna. 

The fundamental spiral coil named leaf coil is obtained by joining together the so called forward 

and backward spiral coils which define the new concept of the differential geometry of 

phyllotaxis. The other spiral coils are composed of symmetrically rotated leaf coils, combined 

together in such a way to eliminate the transverse magnetic components along the longitudinal z 

axis. The magnetic moments and the multi-pole expansions of the various types of spiral loop 

coils are obtained by using the Taylor series of the spiral vector magnetic potentials. 

According to the formulas and simulations, the magnetic flux density created by the long spiral 

solenoids is uniform and is equal to that created by the long cylindrical solenoid. 

The bifolium coil may be flattened along one axis to meet the requirements of specific 

geometrical needs of space technology. Moreover, the crown solenoids may be cooled down to 

low temperatures by exploiting the holes in between their coils. 

Applications of the spiral induction coils are countless and can be found in space technology 

measurements, spacecraft magnetic shielding, telemetry, telecommunication, electron optics, 

physics and engineering. 
 

Keywords: Spiral solenoids; leaf antenna; differential geometry of phyllotaxis; magnetic coils. 

 

1. Introduction 

The magnetic coils never end to surprise the World with new applications and scientific 

discoveries. Coming from the chinese word meaning natural energy, the Qi (inductive power 

standard) created by the Wireless Power Consortium (WPC) [1] is probably the best known of 

the various current low power wireless charging standards that are on the current technology 

market. Based on the core principle of electromagnetic inductance, the charging Qi station 

contains one primary coil (TX) which creates an oscillating magnetic field capable of 

transferring power by inducing an alternating current in the secondary receiving coil (RX) 

http://www.scitecresearch.com/
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located on the device being charged. The basic physical principle of the resonant power 

transmission, dates back to the times of Lenz and Tesla [2, 3], whereas the technology is 

constantly evolving in search of new coil designs and systems that enhance the magnetic energy 

coupling and the power transfer efficiency. A flood of electronic products with efficient cost 

effective wireless charging capability dedicated to telecommunication, space technology, 

biotelemetry systems [4], industrial and military applications, is continuously arriving on the 

market, driving the research on the electromagnetism of the magnetic coils and on the 

technology needed to optimize their operability across a very wide range of power levels. 

Solenoid is an old term coined back in 1820 [5] when Ampère showed that this coils 

arrangement in cylindrical geometry behaves like a bar magnet, opening up the idea of 

interpreting all magnetic phenomena in terms of electric currents. Since then, the cylindrical 

solenoids have been used in a variety of scientific applications and in almost every conceivable 

industrial application in the World. This pioneering introductory paper describes some of the 

additional theoretical benefits of the solenoids when considering phyllotaxis patterns of leaves in 

spiral differential geometry [6, 7]. 

As wireless technology has become increasingly accessible to the general population, the 

interactions of the electromagnetic fields with biological systems have stimulated the interest of 

the scientific community and new branches of science are born. 

 Transcranial magnetic stimulation (TMS) [8], for example, is a non-invasive high-tech deep 

brain procedure involved in treatment and diagnosis of neurological disorders that makes use of 

short alternating magnetic fields to increase the blood flow to tissue and to stimulate cells brain 

nerves responsible for regulating mood, memory and decision-making, helping neurons 

communicate better with each other. 

The spatial resolution of TMS is highly dependent upon the shape of the stimulating coil 

[9], accordingly the researchers are pursuing new ways to provide a precise focused physical 

stimulation of specific parts of the brain with advanced designs of magnetic coils, whose 

analysis are reported in specialized researches [10, 11]. 

Magnetic Resonance Imaging (MRI) requires a strong, highly uniform static magnetic field, 

known as the main field to create the initial longitudinal magnetization in the object and to 

maintain Larmor’s precession of nuclear spins at constant angular frequency [12]. 

Spiral geometry adds flexibility in the design and fabrication of the magnetic coils, providing 

new efficient alternative solutions to create intense and uniform magnetic fields for MRI 

applications, magnetic pulses for TMS treatments and elm waves for new types of Phyllotaxis 

wireless charging stations (PWCS) and Phyllotaxis telemetry systems (PTS). 

Neuroergonomic technology known as IMES (Implanted MyoElectric Sensors) [13, 14] 

powered by tiny magnetic coil-antennas implanted through hypodermic needles, will allow 

wireless brain controlled prostheses to be widely available in the foreseeable future. 

High-sensitivity Personal Assistant Devices (PAD) such as RF-MEMS telemetry strain [15] and 

bio-implantable [16] physiological sensors in spiral geometry, have already been proposed to 

monitor mechanical deformations and physiological parameters.  The differential geometry of 

Phyllotaxis may allow to mock up new spiral RF-MEMS coils for magnetoinductive telemetry 

systems according to specific needs and to analytically study the existing spiral configurations. 

Different configurations of Phyllotaxis leaves antenna as the bifolium or crown may be 

extremely efficient and useful in a wide range of applications where the design of good human-

interfaces is critical. 

The common shapes of the microstrip antenna [17] are circular, elliptical, square and 

rectangular; the spiral coordinates will allow to introduce and study analytically a new 

generation of 2-dimensional Phyllotaxis patch arrays antennas to be mounted outside aircrafts 

and spacecrafts. 

The differential geometry of  Phyllotaxis used to conceive new spiral loop designs with reduced 
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Size, Weight and Power (SWAP) could also accelerate the innovation of antenna technologies 

for any kind of application, including positioning, tracking and network functional devices 

embedded in Printed Circuit Boards (PCB) or could lead to the development of new multiple tx 

and rx antennas optimized for wireless MIMO systems [18]. 

The spacecraft induction coil magnetometers [19, 20] are used in measurement of the magnetic 

fields of the planets and their Van Allen’s radiation belts of energy particles. With the use of the 

geometry of the phyllotaxis it is possible to conceive a new generation of magnetometers to be 

employed in devices for space technology such as Tri-axial Search Coil Magnetometers (SCM) 

[21] with bifolium coils. 

New spiral-magnetometers and spiral coils for Magneto-encephalography (MEG) [23] as well as 

for magnetic stimulation of the heart [24] may be particularly sensitive and precise due to the  

focusing effect of their arms. 

The device for the International Thermonuclear Experimental Reactor (ITER) Programme, a 

large scale scientific experiment aimed at demonstrating the viability of fusion reactions through 

the use of two magnetic fields -one created by electric coils, the other created by intense electric 

current in the plasma itself- it was conceived in toroidal geometry [25]. 

The greatest efforts of the researchers in the development of systems for magnetic confinement 

of plasma with a very high field (> 13 T), have focused on new superconducting materials [26] 

rather than on the exploration of new geometries. 

A spiral crown solenoid, which creates a uniform magnetic field along the longitudinal axis, 

may be a valid alternative for thermonuclear experiments or in any situation where the high 

temperature results in an increased risk of failure of the electronic systems such as 

superconducting magnetic shields of spacecraft [27, 28], since the holes in between the spiral 

coils can allow the cooling system to be more effective than the cylindrical or toroidal case. 

In various technological and scientific applications, where the uniformity of the magnetic 

field within a volume of interest for the development of miniaturized devices [29] is essential, 

the flattened bifolium solenoids can be exploited to improve the flexibility for free-modelling 

according to specific geometrical requirements. 

Space technology, whose system requirements are constantly evolving toward large packaging 

densities with significant geometric constraints and complex configurations, could benefit from 

the introduction of the spiral solenoids, e.g. for an accurate linear control of the fluid pressure to 

drive pistons and valves of spacecraft according to specific optimized and reliable designs or for 

new magnetic shields to protect interplanetary manned spaceflights. 

New maps of the nearby galaxy IC342 or Caldwell 5 [30] have recently shown that the 

magnetic fields in the ISM (interstellar medium) interact with its spiraling arms of gas flowing 

inward at its center. Since the total radio continuum emission of IC342 observed with the 

telescopes is not widespread but concentrated in spiral arms [30], the analysis of the power 

radiated by the current flowing along rotated spiral paths can be helpful to study how the 

magnetic fields are distributed around the galaxy in the ISM and related phenomena such as the 

black holes eventually housed and also the production of new stars. 

Despite the interesting results that could be found by comparing the induction 

coils currently used with the new spiral coils, the aim of this work is to introduce an initial 

mathematical tool for a stepped path in the field of the coil design, are therefore required further 

in-depth analysis and dedicated research projects in the future. 

 

2. THE SINGLE SPIRAL COIL 

Magnetic fields are created by electric currents which arises due charges in motion along wires, 

thus the geometry of their trajectories is essential for analytical calculations. The xpressions for 

the magnetic flux densities B


 of simple planar circular current loops have been published in 
cartesian, cylindrical and spherical coordinates [31]. To study the spatial dependence of the 
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magnetic field created by a steady electric current I flowing in a filamentary wire spiral coil (see 

Fig. 1a), the appropriate coordinates-system [6, 7] is 
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where ”’” refers to the coordinates of the spiral coil as indicated in Fig. (1a). In the reference 

frame of the filamentary wire spiral coil, the trajectory of the current density I


is identified by 

'  . The Biot-Savart law gives the magnetic flux density dB


created by an infinitesimal 

element of the filamentary wire spiral coil d

  (see Fig. 1a) carrying the current I, 
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Where 7

0 4 10x    is the permeability of the free space, ' 'ˆ' 'd h d e 

  and 'h  is the Lamè’s 

coefficient of the spiral transformation [7]. 

 

 
Fig. (1). Perspective views of a) The single spiral filamentary wire coil, b) the circular filamentary wire coil. 
 

In Eq. (2.2) 'pr r r 
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 the spiral coil is identified by the vector 'r


, whereas the generic point in 

the space is identified by pr


. According to the Eq. (2.2), the magnetic flux density in the center 

of the spiral coil 0pr 
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Notably, the intensity of the magnetic flux density weakens at an exponential rate with the 

increasing of the negative ' ', 0i f    spiral angles, whereas it grows with the number of spiral 

turns ' '

f iN Int       and it can be made very high as in the particular case of the archimedean 

Tesla’s bifilar pancake coil [3]. 

It is hence found that, the amount of magnetic flux density at the center of the spiral coil 

depends critically on the g factor. 

In Fig. (2) the component zB  at z = 0 for the two cases of the spiral and circular coils, is 

represented as a function of x and y. 

The magnetic flux density created in a generic point of the space is given by, 
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This result can also be obtained by taking the curl of the magnetic vector potential A


 [31], so 

that the magnetic field is divergence free. 

 
Fig. (2a) zB created by the spiral coil (𝑔=0.1, ' =0.1) as a function of x and y variables for I = 1  (one spiral turn 

' 28.97 , ' 35.25i frad rad   ). 
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Fig. (2b) zB created by the spiral coil (𝑔=0.1, ' =0.1) as a function of x and y variables for I = 1  (three spiral 

turns ' 28.97 , ' 47.82i frad rad   ). 

 

As it can be seen in Fig. (3), the magnetic flux density along the z axis has three components. 

 
 

Fig. (3) a) zB  b)  xB  c) yB created by the spiral coils  (𝑔=0.1, ' =0.1 , one turn 
'
i =28.97 𝑟ad, '

f  =35.25 𝑟ad 

and three turns 
'
i =28.97 𝑟ad, 

'
f =47.82 𝑟ad) and circular coil respectively, as a function of the z variable for 

 I = 1A at x = 0 and y = 0. 

 

In the particular case of the component zB  (see Fig. 3a) along the perpendicular axis z through 

the center of the coil, the integral of Eq. (2.4) can be evaluated analytically, 
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Instead, the two components  0, 0,xB x y z   (see Fig. 3b) and  0, 0,yB x y z   (see Fig. 3c), 

which have the same graph along the z axis but different intensities, must be evaluated by using 

numerical methods. 

The magnetic flux density created by a circular coil is symmetrical with respect to the z axis,  

whereas the single spiral coil creates a skewed field with x yB B (see Fig. 3b, c). 

The spiral multi-turn coil creates a magnetic flux density whose intensity decreases with the 

spiral angle θ as described in Fig. (2b) and has its maximum value at the center. In Table 1 a 

comparison between two examples of filamentary wire single spiral and circular loop coils is 

proposed 

 
Table 1. Comparison between two examples of filamentary wire single spiral and circular coils (see Figs. 1,2). 
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Fig. (4). a) the forward   spiral coil clockwise rotating, b) backward   coils counterclockwise rotating under 

the same matrix  ' z
RO  increasing ' . 

 
 
 
 

3. FORWARD   AND BACKWARD   SPIRAL COIL 
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The filamentary wire spiral coil, like the straight wire, doesn’t form a closed loop. 

In order to form a closed loop two types of spiral coils are considered, the forward spiral coil 

already presented in the previous section and the backward coil, which will be introduced 

afterward. Let’s now rotate the reference frame coordinate system of the forward spiral coil in 

respect to the z axis by applying the rotation matrix  ' z
RO  to the Eq. (2.1). This operation 

yields the following generalized forward spiral mapping 
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which has the same characteristics of the simple spiral coordinate-system of Eq. (2.1). As it can 

be seen in Fig. (4), the forward spiral coil rotates clockwise increasing ' . While the g factor is 

equivalent to the angular coefficient m [7], '  is the analogous of the q intercept with the y axis 

of the straight line. On generalizing the concept, two spirals with the same g and different 

1 2    are said to be parallel. The magnetic flux density created by the element of filamentary 

wire forward spiral coil carrying the static current I and rotated of the angle '  around the 

z axis, is given by 
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From Eq. (3.2) and by using the principle of superposition of the effects  0, 0,totB x y z 

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 see Fig. (5) it appears clear that two spiral 

filamentary wires with opposite phases create a pure longitudinal magnetic flux density along 

the z axis, i.e. 
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It is worth to point out that Eq. (2.5) represents only one component of the magnetic flux 

density, whereas Eq. (3.3) identifies the entire magnetic vector at x = 0, y = 0 along the z axis. 

The reflection matrix  
' 'x x

RE
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 with respect to the y axis of the coordinate system in Eq. (2.1) 

and the same rotation matrix  " z
RO  lead to the following spiral conformal coordinates 
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where ”’’” refers to the coordinates of the spiral coil as indicated in Fig. (4b). In the spiral 

reference system, the equation of the backward coil is identified by the coefficient " ' const   . 
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Fig. (5). Two spiral coils with opposite phase a) plane view b) perspective view with magnetic flux vectors. 

 

The magnetic flux density created by the infinitesimal arc-element " "ˆ" "d h d e  

  (the sign ”-” 

determines the direction of the current in the backward coil, see Fig. 4b) of the filamentary wire 

backward spiral coil rotated by the angle "  and carrying the static current I, is given by 
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Eq. (3.2) and Eq. (3.5) differ for the sign of the arc-length element which is taken positive in the 

first ' and negative " in the latter case (see Fig. 4), i.e. the direction of the current and the 

direction of the angle coincide for the forward coil and are opposite for the backward one. 

 

4. THE LEAF COIL IN DIFFERENTIAL GEOMETRY OF PHYLLOTAXIS 

A number of coil geometries such as polar, toroidal, rectangular, etc. have been proposed to 

create different magnetic fields, but most of the spiral forms present in Nature (plants, animals, 
clouds, planets, stars, galaxies) have never been investigated analytically. Spiral geometry 

describes the mathematical characteristics of a wide range of objects found in Nature, first of all 

the models of botanic fingerprints such as loops and whorls or Phyllotaxis of leaves. Most of the 

spirals involved in phyllotaxis patterns are golden spirals or logarithmic spirals whose factor is 

the golden ratio  1 5 2    or  2lng    . Fig. (6) shows a new closed loop coil, called leaf 

coil, obtained from the union of the two types of open filamentary wire coils forward and 

backward. 

The equations of the forward → and backward  ← coils, which form the leaf loop are 
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where (0), (1), are the two subsets of the plane 2  that represent the boundaries of the thn  leaf 

coil. The leaf coordinates of Eq. (4.1) together with their basis vectors can be considered a 

reference point of the differential geometry of phyllotaxis, or the geometry of the arrangements 

of the leaves in the plants. The scheme of the square loop coil [32] is now taken into account in 

the calculation of the magnetic flux density created by the thn leaf coil loop. According to Eq. 

(3.2) and Eq. (3.5), it follows 
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According to eq. (4.2), for 0, 0, ' 0x y    , the magnetic flux density x-component created by 

the thn  leaf (see Fig. 7) along the axis z is 0
nxB  , whereas , 0

n nz yB B  . 

Particularly 
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 (4.3) 

4.1. The leaf  Multipole Magnetic Moment Expansion 

Taking into account the properties of a filamentary wire leaf loop current distribution which is 

localized in a small region of space, it is possible to expand the vector magnetic potential in 

multipoles. For the distribution of the steady-state currents in the idealized filamentary zero 

thickness wire of the closed leaf loop, the vector potentials have the expansion [31,33] 
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where, 
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     (4.5) 

 Since the first integral in eq. (4.4) is only the total displacement of the vector around a closed 

loop, the leaf monopole term vanishes. 
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For 'pr r
 

  , the multipole moment expansion will be dominated by the non-vanishing 

multipole of a lowest-order; terms  of higher-order in the expansion can be neglected. The first 

lowest nonvanishing term in the expansion of the vector magnetic potential of the leaf loop A


 

can be expressed in term of the magnetic moment  1 ,M
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 of the current distribution J
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Fig. (6).  Leaf coil for 1 2 0 1 21, 0.35, ' 0.07765, 0.15 , 0.05 ,n g R mt R mt           .  

a) 0 11, ' 2n          b) rotated by 0 11, ' 4n         , c) 0 12, ' 2n         . 

 

Where  1
n

S  is the total area of the thn leaf loop (the number 0"(1) 2 "N  identifies the leaf type of 

coil). Since M   in eq. (4.7), the magnetic moment of the multileaf coil is quantized (see Fig. 

8) and   01 ,n


 represents the fundamental magnetic moment of the multileaf coil. 

For 'pr r
 

 , the vector potential of the multileaf loop A


is expressed following the power 

Taylor series   
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Where nP  are ordinary Legendre polynomial of 1st  kind of order n. The first term  1 pr


  in the 

expansion of eq. (4.8) is the magnetic monopole term, the 2nd  term 
2

1 pr
 
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  is the magnetic 

dipole term, the 3nd  term 
3
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  is the magnetic quadrupole term, and so on. 
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Fig. (7). zB as a function of  x at y = 0 and as a function of  y at 0, 0, 2x y      , 

for 0.35, ' 0.0765, 1g n    . 

 

Fig. (8). (a) Magnetic moment  1 ,M


 of (b) M superimposed concentric leaf  loop coils. 

 

5. THE PHYLLOTAXIS LEAF ANTENNA 

The purpose of this section is to show how the filamentary wire leaf loop configuration radiates. 

Let’s suppose an alternating harmonic current is driven around the thn  filamentary wire leaf loop  

 0 cos .I I t       (5.1) 

Because of the superposition principle, the retarded potential results in [31, 33] 
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Where 'pr r r 
 

 is the distance from the field (observation) point pr


to the source point 'r


 of 

the leaf coil  
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The far-field approximation assumes that the field point r is very far from the current source 

[33], 
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Where ˆ ˆ ˆ, , re e e   are the unit spherical basis vectors [33]. These fields far from the loop are in 

phase, mutually perpendicular, and transverse to the direction of propagation ˆre and the ratio of 

their amplitudes is 0 0n n
E B c , as expected for electromagnetic waves [31, 33]. The energy flux 

for magnetic dipole radiation is 
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On averaging the intensity over the time, the lines of Poynting flux are almost purely radial once 
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And the total time-average radiated power by the thn  leaf loop antenna, is 
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The signs “-“ in eq. (5.8) and eq. (5.7) depend on the orientation of the leaf loop coil, which 

point in the –x direction (see Fig. 7). The total power radiated by the superposition of infinite 

concentric leaf dipole antennas is  
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6. THE BIFOLIUM COIL. 

The closed loop coil called bifolium coil of Fig. (9) derives from the union of two leaf coils, one 

rotated with respect to the other by an angle 𝜋. 

 
Fig. (9). The bifolium coil for 1, 0, 0.583, ' 0.10744n q g       a) ' 2  ,  2

0.05iR mt ,  2
0.02

f
R mt b) 

' 4  , c) n 1,  q 1, ' 2    ,  2
0.02iR mt ,  2

0.008
f

R mt , d) n 2,  q 0, ' 2    ,  2
0.0032iR mt ,  2

0.02
f

R mt . 
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The equations of the forward  and backward   coil parts are 
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where (2k) and (2k+1), are subset of the plane 2  that represent the boundaries of the thn  

bifolium coil. 

The magnetic flux created by the bifolium coil which carries a static current I is given by the 

sum of the components forward and backward 
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According to Eq. (6.2), for x = 0, y = 0 the magnetic flux density x-y-components created by the 

bifolium coil along the axis 0z   are    
, , , ,
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Fig. (10).   ,2 n qzB of the bifolium coil  1, 0n q  as a function of  x, y = mx, and y, 

x y m for 0.583, ' 0.10744g    ,  2
0.05iR mt ,  2

0.02
f

R mt , ' 2  , m = 0, 0.2, 0.5, 1, 2. 

The magnetic flux density of the bifolium around the axis y has no the xB  component, whereas 

the circular coil creates a symmetrical transverse field B . 

 
 

Fig. (11). bifolium coil with for g=0.5833, ' 0.10744   , 𝑛=1,    2 2
0.05 , 0.05

fiR mt R mt  , ' 2  , circular coil 

with 1 ' 0.05r mt  and 2 ' 0.02r mt  a) zB  as a function of z at the center of the coils 0, 0x y  and comparison 

between circular and bifolium coils, b), c) ,x yB B  as a function of x at 0y  of the bifolium coil, d), e) ,x yB B , as a 

function of y of the bifolium coil f) B  as a function of   at different value of z for the circular loop 

coil 1 ' 0.05r mt . 

 

7. THE BIFOLIUM SOLENOID. 

The magnetic field of an ideal solenoid bifolium can be derived from the Biot-Savart law [34]. 
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where 'pr r r 
 

 . 

Exactly as for the circular coil, the axial magnetic field of a bifolium loop carrying the static 

current I has no transversal components. To find the magnetic field due to a finite bifolium 

solenoid, we will have to approximate the solenoid as constituted by a large number of close 

bifolium loops. 

Let’s take a packed bifolium loops located at z with a thickness 𝑑z′, as shown in Fig. (12), the 

amount of current flowing through it is proportional to 𝑑z′ and is given by  'dI I dz  , where  

N L is the number of turns N  per unit length L . According to Eq. (6.2) and Eq. (7.1), the 

magnetic flux density created by the bifolium solenoid is given by 
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(7.2) 

 
Fig. (12). a) perspective view and lateral view of the flat bifolium solenoid b) magnetic flux densities ,zB B for the 

cylindrical and bifolium solenoids along z. 
 

The contribution to the magnetic flux density at P along the z axis (x = 0, y = 0) of the bifolium 
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solenoid is obtained analytically from Eq. (7.2), i.e. 
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 (7.3) 

 

If the longitudinal dimension  
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the magnetic flux density created by the bifolium solenoid becomes  

  , 02 n qsol zB I        (7.4) 

The solenoid bifolium creates the same uniform longitudinal magnetic flux density of the 

cylindrical solenoid, regardless  of the values of n,q as shown in Fig. (13). 

Examining in depth at the most significant differences between the cylindrical and the solenoid 

bifolium, it can be seen that, despite the magnetic flux densities obey to two different laws 

with the   2 2f z z z a   (see for example [31]) and   2 2lng z z a   (see Eq. (7.3)) functions 

respectively, the results for the long sections L coincide. Moreover, the transverse components 

of the bifolium solenoid are small with respect to the longitudinal zB component (see Fig. 10 for 

the single loop coil). 

The case of multi-bifolium is slightly different because Eq. (7.2) must be integrated between 
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Fig. (13). zB of the bifolium solenoid as a function of  x and y = mx at a) 𝑧=0 mt and b) 𝑧=0.3 𝑚t, c) magnetic 

flux zB  of a multibifolium solenoid  0 0, 1, 1n M q    resulting from two nested solenoids (q = 0 and q = 1), as a 

function of  x at y = 0 and z = 0. 



                                                                                                                  Boson Journal of Modern Physics (BJMP)  

                                                                                                                                                            ISSN: 2454-8413   

 
Volume 4, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                                 356|                                           

 

Again, using the superposition principle, the longitudinal magnetic flux density within the 

innermost bifolium coil results  

   
, 02 2

n qsol zB M n I        (7.5) 

The case of two nested bifolium solenoids is represented in Fig. (13c). 

 

8. THE SPIRAL FOUR LEAF CLOVER AND THE 2 p
 CROWN SOLENOIDS. 

From the union of two bifolium coils one rotated with respect to the other by an angle 2 , the 

closed loop coil called spiral four leaf clover of Fig. (14a). 

The same concept is generalized to the 2 p leaves coil of Fig. (14b) (p = 4). 

The equations of the 2 p  forward   and backward   coil-parts are 
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   (8.1) 

where (2𝑘), (2𝑘+1), are the subsets of the plane 2 that represent the boundaries of 

the
thn crown coil. The integer p  represents the number of leaves 2 p  of the crown coil (see 

Fig. 14c), q represent the starting nested crown coil between n and n + 1 considered and M is the 

number of superimposed loops (M = 1, single loop see Fig. 14a and Fig. 14b). 

The magnetic flux density created by the crown coil identified by the  ,2 , ,pn q M  numbers is 

given by 
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According to Eq. (8.2), for 0, 0x y  the magnetic flux density x-y-components created by the 

crown coil along the axis 0z   are    ,2 , , ,2 , , 0p p

x yB n q M B n q M   and, the z component is a 

generalization of Eq. (6.3), i.e. 
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Fig. (14). a) and g) four leaf clover coil (p=2,M=1,q=0) b) and h) crown solenoid (p=4,M=1,q=0) c) and i) crown 

(p=4,M=4,q=0), d) and e) , f) Bz versus x at y = 0, z = 0 four leaf clover, crown solenoids, g) and h) , i) figures 

were obtained by using MATLAB). 

 

According to Eq. (7.1) and Eq. (8.2), the contribution to the magnetic flux density at P along the 

z axis 0, 0x y  for the single crown solenoid M = 1, is 
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If the longitudinal dimension of the transverse ones, i.e 
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density created by the bifolium solenoid becomes  
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CONCLUSION 

In this pioneering paper the designs of new spiral coils and solenoids have been presented. The 

theory is based on the differential geometry of the phyllotaxis, which consists in the use of the 

spiral orthogonal coordinates reflected and rotated  to generate complex coil designs. Joining 

together two reflected spirals it is possible to obtain a loop whose shape resembles to that of a 

leaf.  Detailed calculations of the electromagnetic fields created by the leaf loop were presented 

for both the static and the dynamic radiating antenna driven by a sinusoidal current 

   cosI t A t . Analytical expressions for magnetic flux density have been found for several  

spiral solenoid patterns. According to the limits for long solenoids, the inner magnetic flux 

density is uniform and directed along the z direction and proportional to the number of loops, 

exactly as for the cylindrical solenoid. Two advantages of the spiral solenoids with respect to the 

cylindrical solenoid are the possibility of obtaining the same uniform magnetic flux densities 

with the same current in a reduced space and of cooling them at low temperature by exploiting 

the holes between their coils. 

Moreover, spiral coils may be used in specific applications of the space technology such as 

magnetic shields of spacecraft, space triaxial search coil magnetometers or to operate pistons 

and valves m of spacecraft. A countless number of new electromagnetic objects can be 

conceived through the use of the spiral coils and solenoids, whose versatility may be exploited 

to fit specific geometrical needs. 
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