
Boson Journal of Modern Physics (BJMP)  

                                                      ISSN: 2454-8413  

 
Volume 3, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                                          255|                                           

 
SCITECH                                                                                Volume 3, Issue 2 
RESEARCH ORGANISATION                                                           July 12, 2017 

  Boson Journal of Modern Physics 

www.scitecresearch.com 

The Origin of Gravity 

An attempt to answer this question with the help of existing concepts. 

Hubert J. Veringa. 

Emeritus Professor at Eindhoven University, The Netherlands  

 

Abstract. 

 
In this document an attempt is made to explain the origin of gravity. The basis for the analysis is a merger of Quantum 

theory and Relativity. Nowhere in the analysis there is any need to deviate from well proven and successful concepts of 

both theories and rules of calculation, and no exotic new particles will have to be introduced. By doing so it is 

demonstrated that, next to its local interactions of a multi-particle system, the Schrödinger equation leads to pairs of two 

and only two members. This solution is used as the invariant term in the quantized Einstein energy equation which finally 

leads to gravitational interactions between members of the pairs. With this particular solution for the quantum-

mechanical wave function it is found that gravity is a second order effect operating over a long range. In this document it 

is tried to give a complete and consistent account of all steps that have been taken in the derivation of the classical 

Newton’s law. Further the document emphasizes precise justification of some of the basic assumptions made and how it 

works out on a cosmological scale. It is also found that the generator of gravity is contributing mass to particles that have 

gravitational interaction.  
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1. Introduction. 

 
In our daily life, gravity is experienced everywhere and at all moments. Without gravity the world as an entity would not 

exist, the Sun would not shine, water waves would not run, etc. Even if we would evaluate the consequences of a small 

change in the gravitational interaction, the universe would look different from how it is now. It is accepted as an 

inescapable force that keeps our existence together. However, where we have some basic understanding of the processes 

around us, there does not exist a suitable explanation for this force at a microscopic level. 

Gravitation interaction manifests itself where other forces are not the determining factor. Therefore, in our real world, we 

see that our direct vicinity has structures that are changing over short distances like mountains, cities, sky scrapers, boats, 

forests etc. At larger distances, of the order of 100 kilometers, the gravity becomes the dominant factor and bodies begin 

to take spherical shapes. Obviously, the smaller the gravity is, so to speak at smaller planets than earth, the structural 

variability will become larger. That the electromagnetic interaction becomes insignificant in shaping the environment is 

not due to the form of the electrostatic interaction, which has basically the same shape as the gravitational interaction, but 

it is due to the fact that positive and negative charges balance and compensate for their interaction. The influence of 

electromagnetism is becoming insignificant already at short distances. 

Now the general belief is that any suitable theory should include, or will be, a merger of classical quantum theory and 

relativity, but until now no theory that is widely accepted has been proposed. Following earlier papers [9] and [10], the 

present document will give an updated scheme of analysis for the mutual interaction between particles that have some 

exchange with respect to time and space, The remarkable thing is that, apparently for more than one reason, particles will 

be interacting in groups of two and only two and can give rise to gravitational exchange. This pair formation is described 

quantum mechanically. Either starting from the classical Schrödinger equation or the relativistic Einstein energy 

equation, but this latter formulated in a quantum mechanical setting known as the “Klein Gordon” (KG) equation, results 

in the same wave function describing pairs of particles. Since this wave function represents a pair potential, a relativistic 

http://www.scitecresearch.com/


Boson Journal of Modern Physics (BJMP)  

                                                      ISSN: 2454-8413  

 
Volume 3, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                                          256|                                           

mass can be attributed to it which is used in the KG-equation to derive an interaction field between the members that 

form the ensemble. It is found that the right form of Newton’s gravity law emerges by consequently working through the 

proposed schemes of both quantum mechanics and the basic equations of relativity theory as expressed by the quantum 

mechanical equivalent of the Einstein energy equation [6], [7].  

2. Groups of particles and sub-spaces. 

Gravity is an attractive force between two bodies, or, at a microscopic level, two particles and therefore any theory will 

have to account for multi-particle systems. For the development of the theory we have therefore to modify the 

Hamiltonian for such a multi-particle system.  

The most simple expression for the kinetic energy in the Hamiltonian for a group of particles numbered by k is given by: 

𝑝 2/2𝑚 =  𝑝𝑘 
2 2𝑚𝑘 𝑘  .              (2.1) 

This expression does, however, not clearly enough describe the behaviour of particle interaction as members of a group, 

but it will be shown that an alternative representation is possible in which still the total kinetic energy remains the same. 

The first step is to write equation slightly different:   

𝑝 2/2𝑚 =  𝑝𝑘 
2 2𝑚𝑘 𝑘 =   𝑝𝑘  2𝑚𝑘  

2

𝑘 .              (2.2) 

This equation does not look so special, but it shows that, if we want to modify the kinetic energy in the Hamiltonian, we 

will have to perform our analysis in the 𝑝𝑘  2𝑚𝑘  – space. 

For reasons that will become clear later we will now modify the Hamiltonian for the two-particle ensemble (ij) and refer 

to Figure 1.  

In this Figure 1 particles mi and mj are moving with momenta pi and pj. But we are interested in their behaviour in the 

space as seen from point O2 and therefore we apply the cosine-rule to both triangles “1” and “2”. Knowing that:  

cos 𝛿2 = −cos(180 − 𝛿2) and taking 𝑝𝑖𝑗 / 2𝑚𝑖 = 𝑝𝑗𝑖 / 2𝑚𝑗 , it follows that:  

𝑝𝑖 
2 2𝑚𝑖 + 𝑝𝑗 

2 2𝑚𝑗 = 𝑝𝑔 
2 2𝑚𝑔 + 𝑝𝑖𝑗 

2 2𝑚𝑖 + 𝑝𝑗𝑖 
2 2𝑚𝑗 .          (2.3) 

In this modified kinetic energy part of the Hamiltonian the first term at the right hand is the kinetic energy of the group, 

identified with label g, consisting of mi and mj with mass 𝑚𝑔 = 𝑚𝑖 + 𝑚𝑗  and moving as one single entity.  

mi mj
Pij/√(2mi)

Pj/√(2mj)
Pi/√(2mi)

Pji/√(2mj)

O1

Pg/√(2mg)

[1]

d2

180-d2

[2]

O2

Sub-space rij

d1

X

Y

Z

mi

mj

rij

 

Figure 1: The relation (2.3) found by applying the cosine-rule to both triangles “1” and “2” if the lengths of the 

arrows 𝐩𝐢𝐣/ 𝟐𝐦𝐢 and 𝐩𝐣𝐢/ 𝟐𝐦𝐣 are the same. In this view vectors and operators are treated as equivalent. Note 

that, in this two-dimensional momentum space, the velocity or the momentum vectors for particles always have 

the same origin. 
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The second term and third term left are the kinetic energies in the sub-space. The group momentum vector 𝑝𝑔  2𝑚𝑔  is 

not equal to any of the other ones so that  𝑝𝑔  has to be defined separately. As the interaction between the two particles is 

only within the sub-space rij, we will not have to bother about this first term at the right hand. This is fortunate because it 

depends on the angle between 𝑝𝑖  2𝑚𝑖  and  𝑝𝑗  2𝑚𝑗  which would severely complicate the problem.  

It can also be seen that this modification of the Hamiltonian only works well for two particles as the geometrical 

argument is confined to one plane. More particles would compel us to perform the analysis in many more different planes 

and would not give a tractable solution. Another important observation is that because 𝑝𝑖𝑗 / 2𝑚𝑖 = 𝑝𝑗𝑖 / 2𝑚𝑗  the sub-

space is symmetric from the point of view of an observer in O2. This issue of symmetry will come back in the solution of 

the Schrödinger equation with the modified Hamiltonian in the sub-space.  

We will now extend the modified Hamiltonian equation for more than two particles, but all of them interacting in groups 

of two and only two:  

 𝑝𝑘 
2 2𝑚𝑘 𝑘 = 1/𝑁( 𝑝𝑔 

2 2𝑚𝑔 𝑔 + 1/2 (𝑖≠𝑗 𝑝𝑖𝑗 
2 2𝑚𝑖 + 𝑝𝑗𝑖 

2 2𝑚𝑗 )).        (2.4) 

The N-factor, the number of particles, is necessary as in the summation each particle is counted N times. The pairs are 

counted by the g- index. Later, when the analysis brings us to the final result, we will come back to the group momentum 

and evaluate the consequence of its dependence on the momenta of mi and mj.  

For completeness we will now derive this dependence and come back to it later. For this we apply the cosine-rules from 

the corner O1 for the triangles “1” and “2” separately and together: “1+2”. the equations are:  

 𝑝𝑖𝑗  2𝑚𝑖 + 𝑝𝑗𝑖  2𝑚𝑗   
2

= 𝑝𝑖 
2 2𝑚𝑖 + 𝑝𝑗 

2 2𝑚𝑗 − 2𝑝𝑖 𝑝𝑗 𝑐𝑜𝑠𝛿1/ 4𝑚𝑖𝑚𝑗 ,                  (2.5a) 

𝑝𝑔 
2 2𝑚𝑔 = 𝑝𝑖 

2 2𝑚𝑖 + 𝑝𝑗 
2 2𝑚𝑗 − 𝑝𝑖𝑗 

2 2𝑚𝑖 − 𝑝𝑗𝑖 
2 2𝑚𝑗 .                  (2.5b) 

This cosine factor showing up complicates the analysis, but in the end it will not trouble our analysis as it can be 

circumvented. Considering relativity the analysis will have to be repeated starting from the equation (2.4), but as it is 

only dealing with the momenta, the result of the previous analysis can be used if we simply replace the vector  𝑝𝑘  2𝑚𝑘  

by 𝑐𝑚𝑘 𝛾𝑘
2 − 1 with the k- label representing i, j, g and  𝑝𝑖𝑗 , 𝑝𝑗𝑖  unchanged. The symbol 𝛾𝑘  equals  1 − 𝑣𝑘

2 𝑐2  −1/2. The 

analysis will be continued in paragraph 7. 

 

3. The sub-space in more detail.  

The total wave function describing a particle or a larger entity under its local influences, 𝛹𝑙𝑜𝑐  𝑟𝑙𝑜𝑐 , 𝑡 , and its extension in 

outer space,  𝛹𝑖𝑛𝑓  𝑟𝑖𝑛𝑓 , 𝑡 ,  is given by: 𝛹𝑡𝑜𝑡 = 𝛹𝑙𝑜𝑐𝛹𝑖𝑛𝑓 . The coordinate 𝑟𝑙𝑜𝑐  is the position of the centre-of-mass of the 

particle inside the atom or nucleus or a solid object or, eventually of a body as a whole, and the coordinate, 𝑟𝑖𝑛𝑓 , is the 

position of this entity from the point of view of an outside observer. They, therefore, can be considered as mutually 

independent. In the same way we define, as before, the Hamilton operator as: 𝐻  
𝑡𝑜𝑡  =   𝑝 2 𝑙𝑜𝑐 /2𝑚𝑙𝑜𝑐  +  𝑝 2 𝑖𝑛𝑓 /2𝑚𝑖𝑛𝑓 +

𝑉𝑙𝑜𝑐 (𝑟 𝑙𝑜𝑐 ) + 𝑉𝑖𝑛𝑓 (𝑟𝑖𝑛𝑓 ). The masses 𝑚𝑙𝑜𝑐  and 𝑚𝑖𝑛𝑓  are not necessarily the same. The 𝑚𝑖𝑛𝑓  is the mass to be connected to 

the particle as it can move freely around whereas 𝑚𝑙𝑜𝑐  is the mass of the particle under the influence of the local 

interactions, sometimes called “reduced mass”. It follows that: 

𝐻  
𝑡𝑜𝑡𝛹𝑡𝑜𝑡 = ( 𝑝 2 𝑙𝑜𝑐 /2𝑚𝑙𝑜𝑐  + 𝑝 2 𝑖𝑛𝑓 2𝑚𝑖𝑛𝑓  +𝑉𝑙𝑜𝑐 + 𝑉𝑖𝑛𝑓 )( 𝛹𝑙𝑜𝑐𝛹𝑖𝑛𝑓 ) = 

 

= ( 𝑝 2 𝑙𝑜𝑐 /2𝑚𝑙𝑜𝑐  +𝑉𝑙𝑜𝑐 )𝛹𝑙𝑜𝑐𝛹𝑖𝑛𝑓 + ( 𝑝 2 𝑖𝑛𝑓 /2𝑚𝑖𝑛𝑓  +𝑉𝑖𝑛𝑓 )𝛹𝑙𝑜𝑐𝛹𝑖𝑛𝑓 .                        (3.1) 

 

Separating the local effect from the surroundings we can set:  

( 𝑝 2 𝑙𝑜𝑐 /2𝑚𝑙𝑜𝑐   + 𝑉𝑙𝑜𝑐 ) 𝛹𝑙𝑜𝑐 = 𝐸𝑙𝑜𝑐𝛹𝑙𝑜𝑐  and:                                                  (3.2a) 

( 𝑝 2 𝑖𝑛𝑓 /2𝑚𝑖𝑛𝑓  +  𝑉𝑖𝑛𝑓 ) 𝛹𝑖𝑛𝑓 = 𝐸𝑖𝑛𝑓𝛹𝑖𝑛𝑓 .                                                                 (3.2b) 

The first equation (3.2a) is the Schrödinger equation describing the behaviour of the entity in its local environment like in 

the nucleus or a solid or, again, as the entity as a whole where it has its individual interactions. The second equation 

(3.2b) describes its movement or presence in the outer space in which the particle, or as a larger entity or part of it, can 

move around. By taking 𝑉𝑖𝑛𝑓  as a constant it is assumed that the behaviour out of its local influences is taken into 
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consideration. This second equation is the starting point in the development of the theory in the next paragraphs. The 

splitting up as in equation (3.2a) and (3.2b) disconnects the local interactions, as is normally done in quantum mechanics, 

from the movement or presence of the particle or the entity individually. In what follows we will only consider the 

second equation as this gives the generator for the gravitational interaction. Because we are interested in the effects of 

masses outside the local interactions we will from now on take for the mass 𝑚𝑖𝑛𝑓  the quantity 𝑚, as it will also be the 

case for the coordinates. Starting from the unmodified Hamiltonian, the general solution of a wave equation describing 

independent particles in spherical symmetry is initiated by the operator: 

𝑝 2/2𝑚 =  𝑝 𝑘
2 2𝑚𝑘 𝑘  , and reads:  

𝛹 =. .𝛹𝑖𝛹𝑗 …𝛹𝑙 =. .  
𝛼𝑖

𝑟𝑖
 𝑒𝑖𝛽𝑖𝑟𝑖x  

𝛼𝑗

𝑟𝑗
 𝑒𝑖𝛽𝑗 𝑟𝑗 x....x 

𝛼𝑙

𝑟𝑙
 𝑒𝑖𝛽𝑙𝑟𝑙x … =   

𝛼𝑘

𝑟𝑘
 𝑒𝑖𝛽𝑘𝑟𝑘

𝑘 .       (3.3) 

We have regrouped the kinetic energy contribution to the Hamiltonian for the same set of particles as: 

𝑝 2/2𝑚 =  𝑝 𝑘
2 2𝑚𝑘   𝑘 = 1/𝑁( 𝑝 𝑔

2 2𝑚𝑔  𝑔 + 1/2 (𝑝 𝑖𝑗
2 2𝑚𝑖  𝑖≠𝑗 + 𝑝 𝑗𝑖

2 2𝑚𝑗  ) ),  

and first we will only consider the second part of it at the right hand side, to start with the group (ij) of two particles only, 

thus we restrict ourselves to the sub-space with coordinates rij. 

 

Figure 2: Forming and describing of 𝓝=N!/2(N-2)! Pairs. In this example the number of groups is three.  

 

Per group there are two independent particles, for the group under consideration like in Figure 2, it is indicated by the 

masses mi and mj . and they experience some force reflected by the potential Vi and Vj . Spherical symmetry is next 

adopted and the only boundary condition is that the wave function is zero at infinity. An observer at mi at a distance rij 

from particle mj and another on mj at rji from particle mi will see that the total wave equation of the individual pair (ij) is 

defined as follows [4], [5]: 

𝐻𝑖𝑗
 𝛹𝑖𝑗 ,𝑡 = 𝑖ħ

𝜕

𝜕𝑡
𝛹𝑖𝑗 ,𝑡 =  − 

ħ2

2𝑚 𝑖

1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗

2 𝜕

𝜕𝑟𝑖𝑗
+

ħ2

2𝑚 𝑗

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖

2 𝜕

𝜕𝑟𝑗𝑖
 𝛹𝑖𝑗 ,𝑡+ 𝑉𝑖 + 𝑉𝑗   

𝛹𝑖𝑗 ,𝑡           (3.4) 

𝛹𝑖𝑗 ,𝑡  is the time and space dependent wave function. The time dependence can be removed by replacing the time 

dependent wave function 𝛹𝑖𝑗 ,𝑡  by 𝛹𝑖𝑗 𝑒
𝑖𝐸𝑖𝑗 𝑡/ħ.  Further, define   𝑉𝑖+ 𝑉𝑗  by 𝑉𝑖𝑗 and we get: 

(𝐸𝑖𝑗 − 𝑉𝑖𝑗 )𝛹𝑖𝑗 +
ħ2

2𝑚 𝑖

1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗

2 𝜕

𝜕𝑟𝑖𝑗
𝛹𝑖𝑗 +

ħ2

2𝑚 𝑗

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖

2 𝜕

𝜕𝑟𝑗𝑖
𝛹𝑖𝑗 = 0.         (3.5) 

To simplify the equation replace  𝐸𝑖𝑗 − 𝑉𝑖𝑗   by 𝜀𝑖𝑗  to propose a solution that is valid in areas where the Vij is not of great 

influence anymore as follows: 

𝛹𝑖𝑗 =  
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
 𝑒𝑖𝛽𝑖𝑗 𝑟𝑖𝑗 +𝑖𝛽𝑗𝑖 𝑟𝑗𝑖 ,             (3.6) 
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where 𝛼𝑖𝑗 and 𝛽𝑖𝑗  are constants independent of space coordinates and time. This solution means that we consider the wave 

function outside the surroundings where the potential energy with all its peculiarities has a very minor effect on the shape 

of the wave function. The only interaction that can play a role will then be based solely on gravitational interaction. By 

substituting the solution in equation (3.5) the following relation is found: 

 −
ħ2𝑖

𝑟𝑖𝑗  𝑟𝑗𝑖
 
𝛼𝑖𝑗 𝛽𝑗𝑖

𝑚𝑗
+

𝛼𝑗𝑖 𝛽𝑖𝑗

𝑚 𝑖
 𝑒𝑖𝛽𝑖𝑗 𝑟𝑖𝑗 +𝑖𝛽𝑗𝑖 𝑟𝑗𝑖 −  

ħ2

2
 
𝛽𝑖𝑗

2

𝑚 𝑖
+

𝛽𝑗𝑖
2

𝑚 𝑗
 x   

x 
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
 𝑒𝑖𝛽𝑖𝑗 𝑟𝑖𝑗 +𝑖𝛽𝑗𝑖 𝑟𝑗𝑖 +  ε𝑖𝑗   

𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
 𝑒𝑖𝛽𝑖𝑗 𝑟𝑖𝑗 +𝑖𝛽𝑗𝑖 𝑟𝑗𝑖 = 0.                           (3.7) 

The complex first term at the left hand side is to be set to zero and in a pair-wise process 𝛼𝑖𝑗𝛽𝑗𝑖 𝑚𝑗 +𝛼𝑗𝑖𝛽𝑖𝑗 𝑚𝑖 = 0 

and 𝛽𝑖𝑗
2ħ2 2𝑚𝑖 +𝛽𝑗𝑖

2ħ2 2𝑚𝑗  = ε𝑖𝑗 =  𝜍(𝑚𝑖 + 𝑚𝑗 ) so that for every value of the energy there will be a value for 

𝜍 and the 𝛽’s  can adapt themselves. Therefore, whatever is the situation in which mi and mj find themselves, there is 

always a 𝛽𝑗𝑖  and a 𝛽𝑖𝑗  and they have no influence on the 𝛼 ′𝑠 as long as 𝛼𝑖𝑗 = 𝛼𝑗𝑖 . It means, that the interaction occurs in 

the sub-space with a pair to be considered as one single entity with a mass of (𝑚𝑖 + 𝑚𝑗 ) and, apart from the separation 

between the members of the pair (R), independent of the situation these members are in. Further, it has to be noticed that 

the Schrödinger equation based on the modified Hamiltonian only is possible for groups of two and only two particles. 

This conclusion has already been drawn in a slightly different way in the previous paragraph where the geometrical 

argument in momentum space is only possible for two partices with momenta vectors in one plane.  

We already came across the fact that the sub-space rij in momentum space for the observer in O2 in Figure 1 is symmetric 

and therefore the solution 𝛹 𝛼𝑖𝑗 ,𝛼𝑗𝑖   is symmetric, meaning, again, that 𝛼𝑖𝑗 = 𝛼𝑗𝑖 . At the moment not much is known 

about the 𝛼 ′𝑠, but one requirement to be imposed on the wave function is that it represents a pair of particles. For the 

time being it can be said that: 

i. The 𝛼 ′𝑠 cannot depend on the running variables in the wave equation: rij or t. It will be a constant that can only 

depend on fundamental nature constants and the particle masses.  

ii.  It should make no difference for the outside world how one member sees its partner or whether and how we see 

the two members of the pair. It means that we can say: 𝛼𝑖𝑗 =  𝑓 𝑚𝑖 𝑓 𝑚𝑗  .  

iii. There is no pair if either mi or mj equals zero so that 𝑓 𝑚𝑖 = 0 for 𝑚𝑖 = 0 and the pair potential should 

increase linearly with both participating masses in the pair. 

To sum up also the movement of the group as one entity and the fact that there are N particles and 𝒩=N!/2(N-2)! pairs, 

leads to a total wave function as:  

𝛹 =   
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
 𝑒𝑖𝛽𝑖𝑗 𝑟𝑖𝑗 +𝑖𝛽𝑗𝑖 𝑟𝑗𝑖

𝑖𝑗   
𝛼𝑔

𝑟𝑔
 𝑒𝑖𝛽𝑔𝑟𝑔

𝑔 .              (3.8) 

The second product is due to the first contribution to the momentum-based energy term in equation (2.4) and, as already 

mentioned, it generates no gravitational interaction. The index g is identified by the pair (ij) as indicated in figure 1. The 

first term in the product (3.8) gives gravitational interaction in the case of two, and only two members in an ensemble 

where the sum is taken over all possible and unique pairs (ij). As the pairs are to be considered in their own unique 

coordinate system 𝑟𝑖𝑗 ,  there is no reason to consider all the pairs together but only the behaviour of a single pair. In the 

end we will add up all the contributions of the pairs as shown schematically in Figure 4 in paragraph 5.   

There is freedom in the choice of the  particles mi, mj, ---, ml ---. It can actuallly be anything like elementary particles, 

nuclei or even larger entities if, at least, we can describe such an entity by a single wave function in its own coordinate 

system and solve the equation to form a pair with another entity.  

Later it will be confirmed that, as before and for the sake of symmetry in the mutual gravitational interaction, the two 𝛼′𝑠 

should be equal. It also means that the β’s have opposite signs and fixed values and, by taking the 𝛼′𝑠 equal, we make 

their values independent of the masses and the energies of the members of the pair. The 𝜀𝑖𝑗  could have been split into two 

separate quantities as 𝜀𝑖𝑗  and 𝜀𝑗𝑖  to dedicate the 𝛽𝑖𝑗
2  and 𝛽𝑗𝑖

2 -values to the separate energies of the two particles. It is also 

interesting to notice that the solution of the wave equation for the pairs like in equation (3.8) looks different from a 

solution for a single particle on the basis of the unmodified Hamiltonian as in equation (3.3). For instance, if we take a 

look at the rij dependence in the solution (3.8), we see that there is an extra rij dependent factor in the exponential term. 

This latter term is insufficient to make such a solution applicable for the operator working on rij. For it to be sufficient we 

need the total pre-exponential factor as given in equation (3.8).  

An alternative approach is possible by taking the KG-equation as the starting point. In this way we guarantee full co-

variance throughout the entire analysis. The Einstein energy equation is the basis of the KG- equation [5] and reads:  
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𝐸2 - 𝑝2𝑐2  = 𝑚0
2𝑐4 or expressed alternatively: 𝐸2/𝑚0

2𝑐4 - 𝑝2/𝑚0
2𝑐2 = 1,  

and translated into quantum mechanical language for an ensemble of two particles [6]:  

 

(𝐸𝑖𝑗
2 /𝑚0𝑖𝑗

2 𝑐4 − 𝐸𝑗𝑖
2/𝑚0𝑗𝑖

2 𝑐4)𝛹𝑖𝑗  –((𝑝𝑖𝑗 )2/𝑚0𝑖𝑗
2 𝑐2 − (𝑝𝑗𝑖 )2/𝑚0𝑗𝑖

2 𝑐2))𝛹𝑖𝑗 = 0,        (3.9) 

where 𝑝𝑖𝑗   2 is the square of the momentum operator in spherical coordinates as in equation (3.3) and 𝑚0𝑖𝑗  the rest mass of 

the particle i in the ensemble (ij). Also in this case it immediately can be seen that, with the solution of the form as in 

equation (3.6), the same interpretation as before can be given. So there is not much news in this alternative, but a wave 

equation with zero masses starting from: 

 (𝐸𝑖𝑗
2 + 𝐸𝑗𝑖

2)𝛹𝑖𝑗  –𝑐2((𝑝𝑖𝑗 )2 − (𝑝𝑗𝑖 )2)𝛹𝑖𝑗 = 0                   (3.10) 

 

has a non constant solution in space and time coordinates. This is remarkable as a zero mass particle like a photon can 

result in a mass-like presence in open space. It may well be that this is the basis for the fact that in the Friedmann 

cosmological equations also energy related gravitational pull has to be adopted [3]. 

Now we come to the central transition point from quantum mechanics to quantum-based relativity.  

The wave function as derived gives the presence of an entity to which a rest mass, 𝑚0𝑖𝑗 , can be dedicated. In quantum 

mechanical language this rest mass, or rest masses squared, become an operator and therefore it has to be multiplied by 

the wave function and its conjugated function: 𝛹𝑖𝑗
∗𝑚0𝑖𝑗

2 𝛹𝑖𝑗  and we get:   

 𝛹𝑖𝑗
∗ 𝑐4𝑚0𝑖𝑗

2 𝛹𝑖𝑗 = 𝑐4𝑚0𝑖𝑗
2  

𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
 

2

.                       (3.11) 

At this moment it is obvious already that 𝑚0𝑖𝑗  will be proportional to the masses of both participating particles in the 

interaction. But this is for the time being only a temporary conclusion. It will be justified later as it is of great importance 

for the final derivation of the gravity law. Another very important thing is that from  𝛼𝑖𝑗𝛽𝑗𝑖 𝑚𝑗 +𝛼𝑗𝑖𝛽𝑖𝑗 𝑚𝑖 = 0 with 

𝛼𝑖𝑗 = 𝛼𝑗𝑖  it follows that there is for the 𝛼-values some freedom in choosing its dependence on relativistic parameters such 

that the right hand side of equation (3.11) becomes an invariant as it should be, but also it is important for the conclusion 

that the form of the gravity law is independent of the mutually interacting masses of macroscopic bodies.   

 

4. Relativistic interaction.  

Now, in the next step, the pair is considered as essentially one entity and the problem can be analysed in the relativistic 

four dimensional space. We will draw up the KG-equation remembering the rules of adding up four-vectors and 

subsequently the formation of the invariant out of this sum. In this representation, however, the rest mass due to the 

interacting particles in the pair (ij), 𝑚0𝑖𝑗 , is to be considered as an entity that is completely independent of all the other 

rest masses formed. But the most important difference from the treatment before is that we will be working in the 

momentum based sub-space rij where the group is seen as one single entity. The energy reflects the energy of the two 

particles together as well as masses and momenta like: 𝑝2 = (𝑝𝑖𝑗 + 𝑝𝑗𝑖 )2 and: 𝐸2 =  𝐸𝑖
 + 𝐸𝑗  

2
 with: 𝐸2 - 𝑝2𝑐2 = 𝑚0

2𝑐4.

    

Again we will have to translate this equation into the appropriate quantum mechanical language for pairs as one entity 

and therefore make the following transformations: 

-𝑝2𝑐2𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡= (𝑚0
2𝑐4-𝐸2)𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡 ,   𝐸

2 =  𝐸𝑖
 + 𝐸𝑗  

2
= −ħ2 𝜕2

𝜕𝑡2   and: 

𝑝2 = (𝑝𝑖𝑗 + 𝑝𝑗𝑖 )
2  

= -ħ
2 

1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗

2 𝜕

𝜕𝑟𝑖𝑗
+  

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖

2 𝜕

𝜕𝑟𝑗𝑖
+

𝜕

𝜕𝑟𝑖𝑗

𝜕

𝜕𝑟𝑗𝑖
+ 

𝜕

𝜕𝑟𝑗𝑖

𝜕

𝜕𝑟𝑖𝑗
 .  

 

The last expression is, as different from earlier, a mixed sum of the momenta. This representation is a consequence of the 

fact that the particles have been treated only in pairs and that spherical symmetry remains to be adopted.  

Referring to Figure 2 the total relativistic KG-equation for a number of pairs (𝒩) now will be set up. There are N 

particles which make a total of 𝒩 = N!/2(N-2)! pairs, each of which are described by a wave function as a solution of the 

initial Schrödinger equation. As before, the 𝛼-values accommodate all necessary multiplication factors.  
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Adding up for all pairs, treating them as mutually independent and taking into account the basic rules of quantum 

mechanics and four-vector algebra lead to: 

c
2
ħ

2  
1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗

2 𝜕

𝜕𝑟𝑖𝑗
+ 

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖

2 𝜕

𝜕𝑟𝑗𝑖
+

𝜕

𝜕𝑟𝑖𝑗

𝜕

𝜕𝑟𝑗𝑖
+  

𝜕

𝜕𝑟𝑗𝑖

𝜕

𝜕𝑟𝑖𝑗
  𝜑𝑗𝑖 ,𝑡𝜑𝑖𝑗 ,𝑡𝑖𝑗𝑖𝑗 =  

=  𝑚0𝑖𝑗
2  

𝛼𝑖𝑗
2

𝑟𝑖𝑗
2 + 2

𝛼𝑖𝑗

𝑟𝑖𝑗

𝛼𝑗𝑖

𝑟𝑗𝑖
+

𝛼𝑗𝑖
2

𝑟𝑗𝑖
2  𝑖𝑗  𝜑𝑗𝑖 ,𝑡𝜑𝑖𝑗 ,𝑡 −𝒊𝒋  (𝐸𝑖

 
𝑖𝑗 +𝐸𝑗 )

2 𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡𝑖𝑗
          

(4.1)  

with:  𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡𝑖𝑗 = 𝐹 𝑡  𝜑𝑖𝑗𝜑𝑗𝑖𝑖𝑗 =  𝜑𝑖𝑗𝜑𝑗𝑖𝑖𝑗   
𝛼𝑔

𝑟𝑔
 𝑒𝑖 𝑘𝑔𝑟𝑔−𝜔𝑔𝑡 𝒩

1 .        (4.2) 

𝑚0𝑖𝑗  is the rest mass to be dedicated to the interaction field created by the masses mi and mj. This factor also 

accommodates the c
2
 as in equation (3.11).The pairs in both products, in total 𝒩=N!/2(N-2)! are numbered by g, if there 

are N particles. The term 𝑒𝑖 𝑘𝑔𝑟𝑔−𝜔𝑔 𝑡  expresses a wave propagating in radial direction representing the moving of 

individual groups, but with reducing amplitude, or, rather probability, as it progresses. If there is no interaction between 

members of the pairs (𝛼𝑚𝑛 = 0) we get the movement of the individual particles outside their local influence.  

This set-up has a very delicate interpretation. It shows that an observer from outside sees a pair creating a sub-space but 

cannot determine its structure inside. In the space inside, expressed by the coordinates rij and rji, gravitational interactions 

are occurring. Our observer only sees the separate interacting members of the pair with an energy due to this interaction 

as is shown schematically in Figure 3. It is as if we see two persons who have made a secret agreement and are, by acting 

as a pair, exchanging information. We can see both persons but we cannot explain why they behave as they behave.  

As before the time dependences can be removed by setting:    

𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡 = 𝜑𝑖𝑗𝜑𝑗𝑖 𝑒
𝑖(𝐸𝑖𝑗 + 𝐸𝑗𝑖 )𝑡/ħ,             (4.3) 

so that: 

 (𝐸𝑖
 

𝑖𝑗 +𝐸𝑗 )
2𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡= (𝐸𝑖𝑗𝑖𝑗 +𝐸𝑗𝑖 )

2𝜑𝑖𝑗𝜑𝑗𝑖 .             (4.4) 

 

Figure 3: Energy transfer from the pair to the surroundings and the sub-space (white area) with internal 

exchanges as observed from far away.  

If all 𝛼 ′𝑠 would have been equal to zero, a propagating wave 𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡  extending in the radial direction with the light 

velocity would have resulted. Non zero values of 𝛼 reduce this speed and, as a consequence, give mass to the field 

𝜑𝑖𝑗 ,𝑡𝜑𝑗𝑖 ,𝑡 . 

The proposed solution will be:  

𝜑𝑖𝑗 = 𝛾𝑖𝑗 𝑟𝑖𝑗

𝑚0𝑖𝑗 𝛼𝑖𝑗
ħc
 

,               (4.5) 



Boson Journal of Modern Physics (BJMP)  

                                                      ISSN: 2454-8413  

 
Volume 3, Issue 2 available at www.scitecresearch.com/journals/index.php/bjmp                                                          262|                                           

𝛾𝑖𝑗  is the amplitude, not to confuse with the relativity factor 𝛾𝑘  occurring in paragraph 7. 

From the boundary condition that 𝜑𝑖𝑗  𝑟𝑖𝑗 ,𝛼𝑖𝑗  = 0 for 𝑟𝑖𝑗  to infinity  a fourth condition on the 𝛼 ′𝑠 can be derived: 

 𝛼𝑖𝑗  is negative under all circumstances.  

Equation (4.5) is inserted into: 

 (𝐸𝑖𝑗𝑖𝑗 +𝐸𝑗𝑖 )
2 𝜑𝑗𝑖𝜑𝑖𝑗𝑖𝑗 −  𝑚0𝑖𝑗

2  
𝛼𝑖𝑗

2

𝑟𝑖𝑗
2 + 2

𝛼𝑖𝑗

𝑟𝑖𝑗

𝛼𝑗𝑖

𝑟𝑗𝑖
+

𝛼𝑗𝑖
2

𝑟𝑗𝑖
2  𝑖𝑗  𝜑𝑗𝑖𝜑𝑖𝑗𝑖𝑗 +  

 

+𝑐2ħ2   
1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗

2 𝜕

𝜕𝑟𝑖𝑗
+ 

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖

2 𝜕

𝜕𝑟𝑗𝑖
+

𝜕

𝜕𝑟𝑖𝑗

𝜕

𝜕𝑟𝑗𝑖
+  

𝜕

𝜕𝑟𝑗𝑖

𝜕

𝜕𝑟𝑖𝑗
 𝑖𝑗  𝜑𝑗𝑖𝜑𝑖𝑗𝑖𝑗 = 0,         (4.6) 

and some algebra needs to be done during which it will be found that many terms on the left hand side are equal to the 

ones at the right hand side and therefore disappear. We get:  

(𝐸𝑖𝑗
2 + 2𝐸𝑖𝑗𝐸𝑗𝑖 + 𝐸𝑗𝑖

2)𝜑𝑖𝑗𝜑𝑗𝑖 +  𝑐ħ𝑚0𝑖𝑗  
𝛼𝑖𝑗

𝑟𝑖𝑗
2 +

𝛼𝑗𝑖

𝑟𝑗𝑖
2  𝜑𝑗𝑖𝜑𝑖𝑗 = 0.

.
            (4.7) 

 

At this point a remark has to be made: removing the term 𝛼𝑘𝑙
2 𝑟𝑘𝑙

2  means that some basic interaction occurs between the 

gravitational field and the particle. Obviously, for this separate term, a KG-equation can be formulated that shows that an 

entity with some relativistically derived mass operates and leaves behind a contribution to the interaction energy in the 

equation (4.7). So already at this point there is direct interaction between the pair and the field around. Also removing the 

term with  𝛼𝑖𝑗𝛼𝑗𝑖 𝑟𝑗𝑖 𝑟𝑖𝑗  means that there is a third interaction between the fields and the pair. It is schematically 

represented in Figure 3. 

Taking all these interactions into account it is seen that all α-terms in equation (4.6) have disappeared. This has a 

profound meaning: in this model gravity is due to second order effects of the peculiarities of the spherical symmetry in a 

relativistic setting. The effect is weak and operates over a long range.   

The contributions can now be redistributed, but first multiply all terms by 𝑟𝑖𝑗 𝑟𝑗𝑖  and observe that the proposed solution is 

the only one that gives a sharp value for the quantity 𝐸𝑖𝑗  𝑟𝑖𝑗   and 𝐸𝑗𝑖  𝑟𝑗𝑖  : 

(𝐸𝑖𝑗
2 𝑟𝑗𝑖 𝑟𝑖𝑗 + 𝐸𝑖𝑗𝐸𝑗𝑖 𝑟𝑗𝑖 𝑟𝑖𝑗 )𝜑𝑖𝑗𝜑𝑗𝑖 + 𝑐ħ𝑚0𝑖𝑗𝛼𝑖𝑗

𝑟𝑗𝑖

𝑟𝑖𝑗
𝜑𝑖𝑗𝜑𝑗𝑖 = 0,                             (4.8a) 

(𝐸𝑗𝑖
2 𝑟𝑗𝑖 𝑟𝑖𝑗 + 𝐸𝑖𝑗𝐸𝑗𝑖 𝑟𝑗𝑖 𝑟𝑖𝑗 )𝜑𝑖𝑗𝜑𝑗𝑖 + 𝑐ħ𝑚0𝑖𝑗𝛼𝑗𝑖  

𝑟𝑖𝑗

𝑟𝑗𝑖
𝜑𝑖𝑗𝜑𝑗𝑖 = 0.                            (4.8b) 

Cutting the equation (4.7) into two separate ones as given in equations (4.8a) and (4.8b) looks like arbitrary, as any cut 

between terms can be made. But if we now come back to the original suggestion and shown in Figure 1, we see that in 

the sub-space the gravitational interaction becomes symmetric. The gravitational energy of particle i is equal to the 

gravitational energy of particle j. It also reflects the point that a pair has to be seen one entity. The observer cannot 

distinguish between the separate members of the pair. 

It is also important to notice that the operators 𝐸𝑘
  and 𝑟𝑙  commute. It means that “Er” is the quantity that has a sharp 

value, meaning that E has sharp value if r is well defined.   

 

5. Law of gravity. 

Most important for finding out how the members of a pair see each other is to look at the equations (4.8a) and (4.8b) by 

an observer on mi who sees the particle mj at a distance of 𝑟𝑖𝑗  and an observer on particle mj looking at mi from a distance 

rji. Both see each other from the same distance 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 𝑅 and they already know that  𝛼𝑖𝑗 = 𝛼𝑗𝑖 = −𝛼 ′ . There are no 

operators anymore in equation (4.8a) and (4.8b) and they can conclude that 𝐸𝑖𝑗 = 𝐸𝑗𝑖 = 𝐸. In the interpretation of the 

equations, however, care has to be taken to the viewpoint from where the equations have been defined. This is the point 

O2 in Figure 1 so that we will have to take R/2 as distances.  Obviously an electron and a proton forming a pair will have 

mutual interaction which are the same although their masses differ by some factor of about 1800. The result is a simple 

relation:  
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2𝐸2(𝑅/2)2 = 𝑐ħ𝛼′𝑚0.                (5.1) 

 

The boundary condition in equation (4.3) is that  𝜑𝑖𝑗𝜑𝑗𝑖  goes to zero for r to infinity so that 𝛼´ > 0,  and because both 

particles in the pair change their energy by the same amount, it follows for the two members of the ensemble together 

that:  

 

𝐸𝑅 =  2𝑐ħ𝛼 ′𝑚0,                              (5.2)  

and the gravitational force is given by:  -𝜕𝐸 𝜕𝑅  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝑅2 .  

Now it is important to see how pairs consisting of particles of different masses present themselves in 𝛼 ′and 𝑚0. It looks 

like both parameters are tightly glued together in for instance equation (3.11), but they stem from different places. They 

have in common that both reflect the fact that pairs of obviously undefined mass units are responsible for the interaction. 

The most simple conclusion, which needs some justification, would be that: 

 𝑚0𝑘𝑙  𝛼𝑘𝑙 =  −σ1
′  𝑚𝑘𝑚𝑙 .σ2

′  𝑚𝑘𝑚𝑙 .                            (5.3) 

In accordance with the addition rules of four-vector algebra we build up two bodies m1 and m2 composed of n1 and n2 

identical building blocks identified by mi in m1 and mj in m2 such that they in total make up the mass of m1 and m2. The 

process is shown in Figure 4. These building blocks can be anything like elementary particles, collection of atoms, as 

long as their masses are the same. First we consider the rest-mass carrying the gravitational interaction. 

It is found that the pair (ij) has gravitational energy, say 𝜀 and thus a mass 𝜀 𝑐2 . In the interaction space between m1 and 

m2 there are n1n2 pairs carrying the interaction between m1 and m2 and so we can conclude that 𝑚012 = 𝑛1𝑛2𝑚0𝑖𝑗 .  

Next we have the wave function of the pair (ij). This is given by equation (4.3) as  𝜑𝑖𝑗𝜑𝑗𝑖 = 𝛾𝑖𝑗 𝛾𝑗𝑖 𝑟𝑖𝑗
𝑚0𝑖𝑗 (𝛼𝑖𝑗 +𝛼𝑗𝑖 ) ħc 

 for the 

basic building block. This wave function for the pair occurs n1n2 times and so we get in the multiplication of 𝜑𝑖𝑗𝜑𝑗𝑖  over 

all pairs between m1 and m2: 𝑛1𝑛2𝑚0𝑖𝑗 (𝛼𝑖𝑗 + 𝛼𝑗𝑖 ) = 𝑚0𝑖𝑗 (𝛼12 + 𝛼21). Combining the two arguments we finally get: 

𝑚012𝛼12 = 𝑛1
2𝑛2

2𝑚0𝑖𝑗𝛼𝑖𝑗  and, remembering that m1 and m2 are composed of identical building blocks, we can conclude 

that 𝑚012𝛼12 = −σ′𝑚1
2𝑚2

2, which leads to the result as in equation (5.3) with: 

𝐸12 = 𝐸21 =   2σ′𝑐ħ. (𝑚1𝑚2)/𝑅.              (5.4)  

 

On can eventually recognize this construction process as creating a recursive structure. In view of this equation (5.4) we 

conclude that also the gravitational interaction is proportional to both masses of the participating particles in the pair.  In 

the Figure 4 a more simple argument is given by the summation starting from the equation (5.4): all pairs that have been 

formed are acting independently so that we can add all the contributions of different masses at their individual locations 

together and in this way constitute bodies in the real world without any interference. This latter argument, however, 

violates causality. It starts from the assumption that the interaction is proportional to the product of the masses, and 

builds up the interaction between larger bodies. It is an easy argument and it says that we can start from any size of 

building blocks and build up the macroscopic structure such that at all sizes and steps in its building up the equation (5.4) 

remains valid. The basic reason that this is possible is due to the freedom of choice for 𝛼𝑖𝑗  as it came as a conclusion 

from equation (3.7).  

This adding up of all the interactions between particles, which in part see each other at different distances, is a problem 

that has already been solved in the formulation of the classical theory of electrostatics [8]. In this way, finally, Newton’s 

gravitation law is obtained which, in vector notation reads: 𝑑𝑖𝑣𝒈 = 4𝜋𝜌𝐺 in which 𝒈 is defined as a gravitational vector 

field around an entity constituting a space coordinates dependent mass density 𝜌. G is the well known gravitational 

constant equal to: 6.673x10
-11 

m
3
kg

-1
sec

-2
 [3]. In accordance with the theory of electrostatics the gravity law can also be 

given in vector representation for bodies M1 and M2 which have their centres of gravity at a separation of R:  

 

𝑭𝟏𝟐 = (𝐺𝑀1𝑀2 𝑅3) 𝑹.               (5.5) 

 

From the equations (5.4) and (5.5) an explicit expression for the parameter σ′  can be derived and also, with the help of 

these equations the small mass to be attributed to the gravitational interaction can be found. This σ′  parameter is equal to 

2.7x10
2
 Jm/kg

4
.  
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Figure 4: Interaction between masses. 

 

6. Transfer of energy and mass. 

In the analysis going from equation (4.6) to (4.8) terms are disappearing due to the solution proposed in equation (4.3). 

But this has to be interpreted with caution. The pair probability density 𝜑𝑖𝑗𝜑𝑗𝑖 . in equation (4.1) represents a field 

carrying the gravitational energy. Therefore, the disappearance of the generator at the right hand side of equation (4.6), 

(𝛼𝑖𝑗 𝑟𝑖𝑗 + 𝛼𝑗𝑖 𝑟𝑗𝑖  )2, involves exchange of energy from the pair to the surrounding space which is equal to the energy 

given in equation (5.4). As a consequence, when the positive value for the energy is taken, the energy of the pair itself is 

reduced by the same amount. In that case the interaction between the members of the pair is attractive. The process is 

schematically shown in Figure 3. The opposite situation in which the energy of the pair is positive, which in principle is 

allowed by the Einstein energy, is not possible when we assume that the energy of the vacuum, to be taken as the 

reference point, is zero. In this interpretation the interaction between mass and the surroundings is a means to transfer 

mass related energy (mc
2
) to gravitational energy. This transfer changes the rest masses of the pair but does not create 

new mass.  

If, however the vacuum state is, as it is generally believed, a non-zero energy state there might be energy available which 

increases with the interaction area, the white area in Figure 3, that can be transferred to the pair. The situation could be 

such that, when the distance between the members of the pair increases, the energy needed is reducing whereas the 

energy, or number of fluctuations carrying sufficient energy is increasing. It means that at some separation distance of the 

members of the pair the interaction can become repulsive as the Einstein equation allows both negative and positive 

values for the interaction energy.  

A solution for the Schrödinger equation of a pair of particles for an observer at distances 𝑟𝑖𝑗  and 𝑟𝑗𝑖  from particle i and j is 

given in equation (3.6). Now if we put our observer close by particle i, the second term in equation (3.6) becomes 

negligible against the first term: 

 

𝛹𝑖𝑗 =  
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
 𝑒𝑖𝛽𝑖𝑗 𝑟𝑖𝑗 +𝑖𝛽𝑗𝑖 𝑟𝑗𝑖 ≅   

𝛼𝑖𝑗

𝑟𝑖𝑗
 𝑒𝑖𝛽𝑖𝑗 𝑟𝑖𝑗 +𝑖𝛽𝑗𝑖 𝑟𝑗𝑖  and: 𝛹𝑖𝑗

∗𝛹𝑖𝑗 ≅  
𝛼𝑖𝑗

𝑟𝑖𝑗
 

2

.        (6.1) 

The KG-equation in operator language now reads: 

-ħ
2 

𝜕2

𝜕𝑡 2 −  𝑐2 1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗

2 𝜕

𝜕𝑟𝑖𝑗
 𝜑𝑖𝑗 ,𝑡 = 𝑚0𝑖𝑗

2  
𝛼𝑖𝑗

𝑟𝑖𝑗
 

2

𝜑𝑖𝑗 ,𝑡 .            (6.2) 

Setting the right hand side to zero, a mass-less particle, we see an equation for a travelling wave at the speed of  light. To 

get rid of the singularity we set 𝛼𝑖𝑗 𝑟𝑖𝑗 =   𝛼𝑖𝑗 𝑟𝑖𝑝  for 𝑟𝑖𝑗 < 𝑟𝑖𝑝 (= 𝑟𝑝), and removing the first term on the left hand side 

gives the London Equation which explains the shielding of the inside of a superconducting material from the outside 

magnetic field: the “Meissner” effect [2]. A similar thing can be imagined in this case with the 𝜑𝑖𝑗 ,𝑡-field for 𝑟𝑖𝑗 < 𝑟𝑝 .  

The distance rp can be identified as the distance from the centre to where local influences have no impact.  

We can solve the equation (6.2) with in the right hand term 𝑟𝑝  for  𝑟𝑖𝑗 , but it is not necessary as it can immediately be 

seen that it dedicates mass to the field in the vicinity of the particle which is equal to 𝑚𝑝 = −𝑚0𝑖𝑗𝛼𝑖𝑗 𝑟𝑝с
2 . As this is the 
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mass to be attributed to the i
th

 particle, due to another particle somewhere in the surroundings, we will have to add up 

over all particles which can make a pair with our particle, so with mp =  mi: 

𝑚𝑝 = − 𝑚0𝑖𝑗𝛼𝑖𝑗 𝑟𝑝𝑐
2 𝑗 = (σ

′

𝑟𝑝𝑐
2 ) 𝑚𝑝

2
𝑗 𝑚𝑗

2.           (6.3) 

 

The consequence is that either 𝑚𝑝 = 0,  a mass-free particle, or: 

𝑚𝑝  = 𝑟𝑝𝑐
2/σ′  𝑚𝑗

2
𝑗 , with, as shown, 𝑚0𝑖𝑗𝛼𝑖𝑗 = −σ′𝑚𝑖

2𝑚𝑗
2.  First the equation allows that there are mass-free particles 

like a photon which makes no pairs according the theorem based on the Schrödinger equation, but it can, according to the 

KG-equation (3.10). It could generate gravity as it is argued in Chapter 9: Cosmography of  W.D. Heacox’s book on the 

expanding Universe [8]. Second, the other solution is that there is a mass carrying particle whose mass becomes higher 

when 𝑟𝑝  increases and, most important, it is all the mass in the surroundings that generate the mass of the i
th

 particle. It is 

actually mass due to the field, but since the singularity moves with the particle the observer nearby can only interpret it as 

a mass contribution to the particle he is looking at. The conclusion taken here corresponds to Mach’s ideas about the 

effect of all physical entities in the universe. 

It would be tempting to evaluate 𝑚𝑝  but, as we know already from observation, it is better to estimate the size or the 

extension of the particle if only this effect is responsible for the mass. The analysis concerns incredibly large and small 

numbers but leads to a surprising outcome.  

Starting from 𝑚�̴�  = 𝑟𝑝𝑐
2/σ′  𝑚𝑗

2
𝑗  and assuming that the mass of the universe is basically due to protons and neutrons 

with almost the same mass, so 𝑚𝑝 = 𝑚𝑗 , and assuming there are N particles in the whole universe giving it a total mass 

of 𝑀𝑢  we can set: 

𝑀𝑢 = 𝑁𝑚𝑗  = 𝑁𝑟𝑝𝑐
2/σ′  𝑚𝑗

2
𝑗 = 𝑁𝑟𝑝𝑐

2/σ′𝑁𝑚𝑗
2 = 𝑟𝑝𝑐

2/σ′𝑚𝑗
2.          (6.4) 

Estimates of the size of the universe on the basis of the inverse Hubble constant and the fact that the average intergalactic 

density is 1000 hydrogen atoms per cubic metre tells us that the total mass of the universe is of the order of 10
55

 kg. σ′  is 

calculated in paragraph 5 at 2.7x10
2
 Jm/kg

4
 and the proton mass is 1.7x10

-27
 kg [11]. It leads to an estimate for the 𝑟𝑝 -

value in the order of 10
-15 

m, which is about the size of a proton (0.8 femtometers) [1]. An electron which is 1840 times 

lighter than the proton will, according to equation (6.3), see the same surrounding as the proton, so its size would be 

smaller by the same factor. 

Although the correspondence with measured data is surprisingly good, it is still a rough estimate and not without 

speculation.  

Even a discrepancy by a factor of 10 would already be acceptable for the outcome of this analysis. For instance, the sub-

space due to the generator 𝑚0𝑖𝑗
2 (𝛼𝑖𝑗 𝑟𝑖𝑗 + 𝛼𝑗𝑖 𝑟𝑗𝑖  )2 would be a quantum-mechanical reality, but it says nothing about its 

internal structure and interactions. The mass of the universe is rather uncertain in view of the discussion about dark 

matter, and the proton size, or how to define it, is not so obvious. The surprising, and at the same time bizarre, conclusion 

of the analysis given is that, apparently, each single particle has interaction with all other particles in the cosmos. It 

means that in the universe an unimaginable number of pair-wise interactions exists with greatly varying intensity and 

extensions and which depend on the masses of the members of the pair. It is difficult to comprehend, but it follows 

unambiguously from the equations describing the behaviour of the pairs.  

As a last remark for this paragraph, causality is of importance to keep in mind. The model starts from the fact that there 

are masses, and it is seen that they can form pairs and generate gravity. It yields numerical data about the masses 

following gravitational parameters. The strength of the model is the consistency of the data with what we observe in 

reality. On the other hand one can say that the mass can be introduced into the Schrödinger equation as an unknown 

quantity and the theory comes back with a numerical value for it if the size of the particle is known.  

 

7.  Gravity depending on dynamical masses. 

In paragraph 2 at the end it is mentioned that a group as a whole, identified with the label g, has kinetic energy and 

therefore a relativistic mass equal to 𝛾𝑔𝑚𝑔 . Although the present theory is only concerned with the situation in the sub-

space rij where gravity originates, it still is of interest to know the dynamic mass of the group because the Hamiltonian 

operator has been modified. The momentum of the group, 𝑝𝑔  2𝑚𝑔 , will determine the dynamic mass to be dedicated to 

the members of the group.  To see this we come back to equation (5.4), now renumbered to (7.1): 

𝐸𝑖𝑗 =   2σ′𝑐ħ. (𝑚𝑖𝑚𝑗 )/𝑅.                            (7.1)  
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This equation is valid for the sub-space in which the gravitational energy is independent of the momenta of the particles 

in the group. But by inspection we see a problem.  

For an observer outside the sub-space the second term left in equation (4.6) should be invariant under Lorentz 

transformation. However, the rkl transforms as a member of a four-vector. Therefore, the parameters 𝛼𝑘𝑙  or, in the case of 

equation (7.1), σ′  should transform in the same way as rkl, but apparently it would make left and right hand side in 

equation (5.2) transform differently, which cannot be the case. We should, however, notice that the Planck’s constant, h, 

is invariant, but ħ = /2𝜋 is not. 

Make the following “thought-experiment”. Consider a pair flying away from us at a speed v such that the separation 

vector of the members of the pair is aligned in the direction of v. Due to the fact that 𝜋 transforms just like 1/rkl the result 

is that the interaction energy of the pair we measure becomes invariant. There is invariance throughout if the alignment 

perpendicular to the speed. So the conclusion is that the interaction energy in the pair is invariant and independent of the 

alignment towards the observer. We can see the pair moving by and, whatever alignment they have, we will see the same 

interaction energy. But for the observer outside the sub-space, actually in point O1 in figure 1, the group as a whole is 

moving which gives a dynamical mass to the particles in the group, but with the same 𝛾𝑔- factor.  

Knowing this we can from equations (2.5a) and (2.5b), in principle, give the value for this group momentum if the 

replacement of the vectors 𝑝𝑘  2𝑚𝑘  by their relativistic equivalents has been done. However, there remains a disturbing 

𝑐𝑜𝑠𝛿1-term making a general solution inappropriate. But the purpose of an endeavour in which such a group related 

dynamic mass is significant makes only sense where gravity is important and speeds are approaching the speed of light. 

So it is not relevant outside the realm of cosmology. In this respect the main problem of the incompatibility between 

quantum theory and relativity, however, comes to the surface. We therefore have to carefully replace the vectors in 

Figure 1 by the relativistically relevant ones which are to be derived from the equations (2.5a) and (2.5b) leading to the 

transitions: 

𝑝𝑎/ 2𝑚𝑎 ↦ 𝑐𝑚𝑎 𝛾𝑎
2 − 1  with 𝑎 = 𝑖, 𝑗 and 𝑔. 

Now we can put our observer on one of the interacting particles, say mi in the group (ij), and consider the surroundings 

from this point of view so that 𝑝𝑖 = 0. In this case 𝑐𝑜𝑠𝛿1 = −1, but because 𝑝𝑖 = 0 the 𝑐𝑜𝑠𝛿1- factor has no influence 

anymore. We end up in a rather complicated situation if we want to know the mass and 𝛾𝑔- values for the group and we 

find non relativistic:  

𝑣𝑔
2 𝑐2 =

𝑚 𝑗

2 𝑚 𝑖+𝑚 𝑗  
𝑣𝑗

2 𝑐2 , and relativistic: 𝛾𝑔
2 − 1 =  

𝑚 𝑗
2

2𝜂2 𝑚 𝑖+𝑚 𝑗  
2  𝛾𝑗

2 − 1 .                 (7.2a, 7.2b) 

The extra parameter 𝜂 complicates the situation. If our observer is on mass mi which is much smaller than mj: 𝜂 = 1, and 

both equations are identical. But in paragraph 5, equation (5.3) we have constructed our bodies with building blocks of 

masses 𝑚𝑖which all are identical in their masses. We should, therefore, start from the case of 𝑚𝑖 = 𝑚𝑗 , so that: 𝜂 =

 1/2.  

The result is:   

𝛾𝑔
2 − 1 =  𝛾𝑗

2 − 1 /4.                             (7.3) 

With the aid of the definition of 𝛾 it is easily changed into the relation: 

 

𝑣𝑔
2 𝑐2 = 𝑣𝑗

2  4𝑐2 − 3𝑣2  .                                     (7.4) 

This gives the mass to be allotted to both members of the group. At low velocities (v << c), The mass of the group 

particles is determined by half the speed of the moving particle. When the speed of the moving particle approaches the 

light velocity, both speeds become equal. This result is similar to the velocity addition rule for relativistic velocities on 

the basis of standard relativity theory [7], but in this case arrived at in way involving gravity.  

At low speeds we have to dedicate dynamic mass to both particles and the equation will read:  

 

𝑭𝟏𝟐 = 𝑹𝐺 𝑀01/ (1 − 𝑣2 4𝑐2 𝑀02/ (1 − 𝑣2 4𝑐2  𝑅3 .                       (7.5) 

 

When speeds are approaching the speed of light, of course, the speeds of both particles are still the same and opposite, 

but at the value 𝑣𝑗 . An alternative way of interpreting equation (7.5) is to place the observer in the sub-space in the 
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middle between the two particles so that the observer sees their speeds 𝑣′ = 𝑣 2  and  opposite and the distance 𝑅′ =
𝑅 2 . In that case the equation becomes:  

𝑭𝟏𝟐 = 𝑹′𝐺 𝑀01/ (1 − 𝑣′2 𝑐2 𝑀02/ (1 − 𝑣 ′2 𝑐2  4𝑅′3 .                                  (7.6) 

This interpretation has to be considered as an alternative interpretation of equation (7.5) and not of the real situation of 

two particles moving away from the observer at equal but opposite speeds. This is because the equations are derived for 

the case that we have taken the momentum of one of the group members as zero. It, however, allows a remarkable 

interpretation. It looks like a “mirror” mass shows up at a distance of R from the moving mass that moves at the same 

speed as the moving one. Far from the light speed the relative speed between the two masses is double the speed seen by 

the observer but when it approaches c, the relative speed becomes c as well.   

In conclusion it can be said that particles in a group in the sub-space have gravitational interaction have masses which 

must be corrected with the relativistic transformation factor 𝛾𝑔  as defined by equation (7.2a and -b).  

The kinetic energy of the group remains to be defined by the value: 

 

 𝐸𝑘𝑖𝑛 = 𝑇 = 𝑀01 𝛾1 − 1 𝑐2 + 𝑀02 𝛾2 − 1 𝑐2.                                 (7.8)  

 

 

8. Discussion and conclusions. 

 
An attempt is made to find an explanation for the gravity law, or Newton’s third law starting from well established and 

proven theorems: Special Relativity and Quantum Mechanics. Although these two theories cannot be readily combined, it 

is possible to use the outcome of quantum mechanical considerations as starting point for further analysis by taking into 

account the rules of specific relativity. If we apply the two concepts in those areas where they have their applicability it 

proved possible to derive the gravity law as it has been established already more than three hundred years ago. The main 

issues in the analysis are: 

1. We can separate the local behaviour of particles in its direct environment like a gas, liquid or a solid from its 

behavior in free space as a member of a larger entity.  

2. We can modify the Hamiltonian of a set of two individual particles, or tightly connected entities, such that for 

two and only two of such entities, characterized by their masses, the Hamiltonian is represented by a group 

kinetic energy operator and a second part which is the direct interaction in a separate momentum based sub-

space.  

3. From this a group wave function and a wave function representing the members in the group emerge. The first 

one is found to be responsible for the dynamic masses to be allotted to the particles in the gravity law and the 

second one is responsible for the gravitational interaction.  

4. The two particle wave function is then recognized as a pair potential in a sub-space between the members of the 

group and is taken as the relativistically invariant rest mass in the Klein Gordon field equation.  

5. By solving the Klein Gordon field equation for the pair represented as a single entity we finally arrive at the 

right form of Newton’s third law of gravity. Also by adding up the basic functions for single group of particles, 

or groups of particles, the right form of the gravity law between large bodies is obtained. 

6. Considering the dynamics of the group as a whole also the influence of the dynamic relativistic mass in the 

gravity equation is derived.  

7. The Klein Gordon equation is also found to be applicable at the level of a single particle and gives a value for its 

mass in dependence of all mass around in the entire universe. Most surprising is that the calculated values are of 

the right order even though the numbers that are going into the equations are extremely large and extremely 

small.  
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